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Abstract This paper is a continuation of the previous study (Šamaj in J. Stat. Phys. 137:1–
17, 2009), where a sequence of sum rules for the equilibrium charge and current density
correlation functions in an infinite (bulk) quantum media coupled to the radiation was de-
rived by using Rytov’s fluctuational electrodynamics. Here, we extend the previous results to
inhomogeneous situations, in particular to the three-dimensional interface geometry of two
joint semi-infinite media. The sum rules derived for the charge-charge density correlations
represent a generalization of the previous ones, related to the interface dipole moment and
to the long-ranged tail of the surface charge density correlation function along the interface
of a conductor in contact with an inert (not fluctuating) dielectric wall, to two fluctuating
semi-infinite media of any kind. The charge-current and current-current sum rules obtained
here are, to our knowledge, new. The current-current sum rules indicate a breaking of the
directional invariance of the diagonal current-current correlations by the interface. The sum
rules are expressed explicitly in the classical high-temperature limit (the static case) and for
the jellium model (the time-dependent case).

Keywords Sum rules · Inhomogeneous systems · Fluctuations · Radiation ·
Classical limit · Jellium

1 Introduction

The models studied in this paper are composed of spinless charged particles, classical or
quantum, which are non-relativistic, i.e. they behave according to Schrödinger and not Dirac.
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This is a substantial simplification. A coherent treatment of matter and radiation at a micro-
scopic level should include a fully relativistic treatment of particles and of their spins in the
framework of quantum electrodynamics at finite temperature. The corresponding analysis
would be much more complicated because of the Dirac particle-antiparticle formalism and
renormalization procedures. There are important results in this work, like equation (3.9),
which are valid for general models. Although the neglect of spin is a problem, our results
are valid for spinless particles, for instance spinless ions.

On the other hand, the interaction of charged particles via the radiated electromagnetic
(EM) field will be considered either non-relativistic (nonretarded) or relativistic (retarded).
In the nonretarded regime, magnetic forces are ignored by taking the speed of light c → ∞,
so that the particles interact only via instantaneous Coulomb potentials. In the retarded
regime, c is assumed finite and the particles are fully coupled to both electric (longitudi-
nal) and magnetic (transverse) parts of the radiated field.

One of the tasks in the equilibrium statistical mechanics of charged systems is to deter-
mine how fluctuations of microscopic quantities like charge and current densities, induced
electric and magnetic fields, etc., around their mean values are correlated in time and space.
A special attention is devoted to the asymptotic large-distance behavior of the correlation
functions and to the sum rules, which fix the values of certain moments of the correlation
functions.

Two complementary types of approaches exist in the theory of charged systems. The
microscopic approaches, based on the explicit solution of models defined by their micro-
scopic Hamiltonians, are usually restricted to the nonretarded regime. A series of sum rules
for the charge and current correlation functions has been obtained for infinite (bulk), semi-
infinite and fully finite geometries (see review [1]). The quantum sum rules are available
only for the jellium model of conductors (sometimes called the one-component plasma),
i.e. the system of identically charged pointlike particles immersed in a neutralizing homo-
geneous background, in which there is no viscous damping of the long-wavelength plasma
oscillations. The macroscopic approaches are based on the assumption of validity of macro-
scopic electrodynamics. Being essentially of mean-field type, they are expected to provide
reliable results only for the leading terms in the asymptotic long-wavelength behavior of
correlations. In general, these approaches are able to predict basic features of physical sys-
tems also in the retarded regime. A macroscopic theory of equilibrium thermal fluctuations
of the EM field in quantum media, conductors and dielectrics, was proposed by Rytov [2–4].
Although Rytov’s fluctuational electrodynamics is the basic method used in this paper, the
derivation of some results does not use Rytov’s theory. Like for instance, the derivation of
the sum rule (3.9) is general and relies on weak assumptions about the decay of charge
correlations in the bulk.

In a recent work [5], a sequence of static or time-dependent sum rules, known or new,
was obtained for the bulk charge and current density correlation functions in quantum media
fully coupled to the radiation by using Rytov’s fluctuational electrodynamics. A technique
was developed to extract the classical and purely quantum-mechanical parts of these sum
rules. The sum rules were critically tested on the jellium model. A comparison was made
with microscopic approaches to systems of particles interacting through Coulomb forces
only [6, 7]; in contrast to microscopic results, the current-current density correlation function
was found to be integrable in space, in both classical and quantum cases.

This paper is a continuation of the previous study [5]. It aims at generalizing the previ-
ous sum rules to inhomogeneous situations, in particular to the interface geometry of two
semi-infinite media with different dielectric functions pictured in Fig. 1. This configuration
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Fig. 1 Two semi-infinite media
characterized by dielectric
functions ε1(ω) and ε2(ω)

includes dielectrics if ε(0) is finite. Strictly speaking, infinite quantum dielectrics do not ex-
ist at finite temperature because there are always free charges [8], but it is of no importance
in the case of dielectric samples of the usual size. Moreover, we can ignore this fact by tak-
ing as models for dielectrics atoms or molecules with strictly binded charges, for instance
hard spheres carrying a dipole.

It should be emphasized that the configuration in Fig. 1 studied here is not exactly the
configuration considered in some previous studies. The standard configuration was a con-
ductor in contact with an “inert” (not fluctuating) wall of the static dielectric constant εW .
The presence of a dielectric wall is reflected itself only via the introduction of charge im-
ages; the microscopic quantities inside the inert wall do not fluctuate, they are simply fixed
to their mean values. Such a mathematical model can provide a deformed description of
real materials and, as is shown in this paper, it really does. The only exception from the
described inert-wall systems is represented by the specific (two-dimensional) two-densities
jellium, i.e. the interface model of two joint semi-infinite jelliums with different mean par-
ticle densities, treated in [9–11]. It stands to reason that in the case of the vacuum (εW = 1)

plain hard wall, there is no charge which could fluctuate and the inert-wall model is therefore
adequate.

To our knowledge, the sum rules for a (fluctuating) conductor medium in contact with
a dielectric (inert) wall obtained up to now were restricted to the charge-charge density
correlation functions. The inhomogeneous charge-charge sum rules are either of dipole type
or they are related to the long-ranged decay of the surface charge correlation function along
the interface.

The classical dipole sum rule for the static charge-charge density correlations follows di-
rectly from the Carnie and Chan generalization to nonuniform fluids of the second-moment
Stillinger-Lovett condition [12, 13]. The time-dependent classical dipole sum rule was de-
rived in [14]. A time-dependent generalization of the Carnie-Chan rule to the quantum (non-
retarded) jellium and the consequent derivation of the quantum dipole sum rule for the time-
dependent charge-charge density correlations were accomplished in Ref. [15].

The bulk charge correlation functions exhibit a short-ranged, usually exponential, decay
in classical conductors due to the screening. On the other hand, for a semi-infinite conductor
in contact with a vacuum or (inert) dielectric wall, the correlation functions of the surface
charge density on the conductor decay as the inverse cube of the distance at asymptotically
large distances [16]. In the classical static case, this long-range phenomenon has been ob-
tained microscopically [17, 18] as well as by using simple macroscopic argument based on
the electrostatic method of images [19]; the prefactor to the asymptotic decay was found to
be universal, i.e. independent of the composition of the Coulomb fluid. In the quantum case
of the specific jellium model, ignoring retardation effects, a nonuniversal prefactor to the
asymptotic decay was obtained, for both static [20] and time-dependent [15, 20] correlation
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functions. Recently [21, 22], by using the inhomogeneous version of Rytov’s fluctuational
theory, we have extended the quantum analysis of the jellium to the retarded case. We got
a surprising result: for both static and time-dependent surface charge correlation functions,
the inclusion of retardation effects causes the quantum prefactor to take its universal static
classical form, for any temperature. The restoration of the classical prefactor by retardation
effects was observed subsequently for arbitrary (conductor, dielectric, vacuum) configura-
tions of two semi-infinite quantum media [23].

In this paper, we apply the inhomogeneous version of the Rytov fluctuational theory to
extend the bulk sum rules, derived in [5], to the geometry of two joint semi-infinite me-
dia with distinct dielectric functions in Fig. 1. The sum rules derived for the charge-charge
density correlations represent a generalization of the previous (dipole moment and surface
charge) ones, valid for a conductor system in contact with an inert dielectric wall, to two fluc-
tuating semi-infinite media of any kind. The fundamental differences between the results for
the inert and fluctuating wall descriptions are pointed out. The charge-current and current-
current sum rules obtained here are, to our knowledge, new. The current-current sum rules
indicate a breaking of the directional invariance of the diagonal current-current correlations
by the interface. The sum rules are expressed explicitly in the classical high-temperature
limit (the static case) and for the jellium model (the time-dependent case).

The paper is organized as follows. In Sect. 2, we review the inhomogeneous Rytov the-
ory of EM field fluctuations and write down basic expressions for the charge and current
densities; explicit results for the elements of the retarded Green function tensor for the two
semi-infinite media configuration in Fig. 1 are presented in Appendix. Dipole sum rules for
the charge-charge density correlation functions are derived in Sect. 3. The sum rules related
to the long-ranged tail of the surface charge density correlation function along the interface
between two media are discussed in Sect. 4 which is divided into three parts. In Sect. 4.1,
we generalize the classical static analysis of a medium in vacuum [23] to arbitrary media
configurations. Section 4.2 concerns the derivation of a classical static relation between the
dipole moment and the large distance asymptotic of the surface charge density. Section 4.3
is a brief recapitulation of the quantum case, in both retarded and nonretarded regimes. The
sum rules for the charge-current and current-current density correlation functions are the
subject of Sects. 5 and 6, respectively. Section 7 is the Conclusion.

2 Fluctuational Formalism

We consider the (3 + 1)-dimensional space of points, defined by Euclidean vectors r =
(x, y, z) and time t . We shall deal with semi-infinite geometries, inhomogeneous say along
the first coordinate x; it is useful to denote the remaining two coordinates normal to x

as R = (y, z). The model consists in two distinct semi-infinite media (conductors, di-
electrics or vacuum) with the frequency-dependent dielectric functions ε1(ω) and ε2(ω)

which are localized in the complementary half spaces �1 = {r = (x > 0,R)} and �2 =
{r = (x < 0,R)}, respectively, so that the interface between the media is localized at x = 0
(see Fig. 1). We shall assume that the media have no magnetic structure, i.e. they are not
magnetoactive, and the magnetic permeabilities μ1 = μ2 = 1. The two-point functions stud-
ied in this paper will be translationally invariant in time and in the vector space R perpen-
dicular to the x axis, and so we shall use the (partial) Fourier representation
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f (t, r; t ′, r′) ≡ f (t − t ′,R − R′;x, x ′)

=
∫ ∞

−∞

dω

2π

∫
R2

dq
(2π)2

e−iω(t−t ′)+iq·(R−R′)f (ω,q;x, x ′), (2.1)

where ω denotes the frequency and q = (qy, qz) is the two-dimensional wave vector.
The induced EM fields inside a material medium are random variables which fluctuate

in time and space due to the random motion of charged particles. In the long-wavelength
scale, the EM fluctuations are described by the Rytov theory [2–4]. This theory is usually
formulated in the Weyl gauge with the scalar potential φ(t, r) = 0, so that the (classical)
vector potential A(t, r) with components Aj(t, r) (j = x, y, z) determines the microscopic
electric and magnetic fields as follows

E = −1

c

∂A
∂t

, B = curlA (2.2)

(we use Gaussian units), where c is the speed of light. In the context of the quantized EM
field theory, the crucial role is played by the retarded photon Green function tensor D defined
by

iDjk(t − t ′; r, r′) =
{ 〈Aj(t, r)Ak(t

′, r′) − Ak(t
′, r′)Aj (t, r)〉, t ≥ t ′,

0, t < t ′, (2.3)

where Aj(t, r) denotes the vector-potential operator in the Heisenberg picture and the angu-
lar brackets represent the equilibrium averaging at temperature T , or the inverse temperature
β = 1/(kBT ). For non-magnetoactive media, the Green function tensor possesses the sym-
metry

Djk(t − t ′; r, r′) = Dkj (t − t ′; r′, r). (2.4)

In the Fourier space, the symmetry is expressible as

Djk(ω,q;x, x ′) = Dkj (ω,−q;x ′, x). (2.5)

The validity of macroscopic Maxwell’s equations for the mean values of the EM fields
implies, in the frequency Fourier space, a set of differential equations of dyadic type fulfilled
by the Green function tensor:

∑
l

[
∂2

∂xj∂xl

− δjl
 − δjl

ω2

c2
ε(ω, r)

]
Dlk(ω; r, r′) = −4π�δjkδ(r − r′). (2.6)

Here, in order to simplify the notation, the vector r = (x, y, z) is represented as (x1, x2, x3).
The source point r′ and the index k only act as some fixed parameters, the boundary con-
ditions are with respect to the field point r. There is an obvious boundary condition of
regularity Djk(ω; r, r′) → 0 for asymptotically large distances |r − r′| → ∞. At an inter-
face between two different media, the boundary conditions correspond to the macroscopic
requirement that the tangential components of the fields E and H = B, considered in the
gauge (2.2), be continuous. The Green function tensor for the geometry pictured in Fig. 1
was obtained in a number of papers, see e.g. the method using vector wave functions [24]
or the Weyl expansion method [25, 26]. The results are usually written in a complicated
way, by using the dyadic notation for the tensors. In order to enable the reader to reproduce
easily calculations performed in this work, in the Appendix we present explicitly the Fourier
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transforms (2.1) of the tensor elements Djk(ω,q;x, x ′) for two possible cases: the points r
and r′ are in the same half space or they are in different half spaces.

Applying the fluctuation-dissipation theorem and assuming the symmetry (2.5), the fluc-
tuations of the vector potential are described by the formula

〈Aj(ω,q;x)Ak(−ω,−q;x ′)〉s = − coth

(
β�ω

2

)
ImDjk(ω,q;x, x ′), (2.7)

where Im means the imaginary part and 〈Aj(ω,q;x)Ak(−ω,−q;x ′)〉s is the Fourier trans-
form of the symmetrized correlation function

〈Aj(t, r)Ak(t
′, r′)〉s ≡ 1

2
〈Aj(t, r)Ak(t

′, r′) + Ak(t
′, r′)Aj (t, r)〉T. (2.8)

Here, 〈· · · 〉T represents a truncated equilibrium average, 〈AB〉T = 〈AB〉 − 〈A〉〈B〉.
The relation (2.7) enables us to calculate the symmetrized two-point correlation func-

tion of arbitrary statistical quantities. Let a scalar quantity u be expressible in terms of
the components of the vector potential, in the classical format and in the gauge (2.2),
as u(t, r) = ∑

j UjAj (t, r), where {Uj } (j = x, y, z) are operators acting on time and
space variables. Within the spectral representation with a single frequency ω and two-
dimensional vector q, f (t, r) = e−iωt+iq·Rf (ω,q;x), this relation takes a partially algebraic
form u(ω,q;x) = ∑

j Uj (ω,q;x)Aj (ω,q;x) (Uj can still act as operators on the x coor-
dinate). It follows from the definition (2.1) that the Fourier transform of the symmetrized
two-point correlation function of statistical quantities u and v, 〈u(t, r)v(t ′, r′)〉s , is then de-
termined by

〈u(x)v(x ′)〉sω,q ≡ 〈u(ω,q, x)v(−ω,−q, x ′)〉s

=
∑
jk

Uj (ω,q;x)Vk(−ω,−q;x ′)〈Aj(x)Ak(x
′)〉sω,q, (2.9)

where 〈Aj(x)Ak(x
′)〉sω,q ≡ 〈Aj(ω,q;x)Ak(−ω,−q;x ′)〉s is given by (2.7). The statistical

quantities of our interest are the volume charge density ρ and the electric current density j.
The charge density, defined by 4πρ(t, r) = div E (we use the microscopic formalism, this
formula is correct, without a factor 1/ε; the microscopic ρ includes the bound charges in the
case of a dielectric), is expressible in terms of the vector potential components as follows

ρ(ω,q;x) = ω

4πc

(
i

∂

∂x
Ax − qyAy − qzAz

)
, (2.10)

where the abbreviated notation Aj ≡ Aj(ω,q;x) is used. The vector components of the
electric current density, defined by 4π j(t, r) = c curl B − ∂tE, are expressible as

jx(ω,q;x) = c

4π

[(
q2 − ω2

c2

)
Ax − i

∂

∂x

(
qyAy + qzAz

)]
, (2.11)

jy(ω,q;x) = c

4π

[
−iqy

∂

∂x
Ax +

(
q2

z − ω2

c2
− ∂2

∂x2

)
Ay − qyqzAz

]
, (2.12)

jz(ω,q;x) = c

4π

[
−iqz

∂

∂x
Ax − qyqzAy +

(
q2

y − ω2

c2
− ∂2

∂x2

)
Az

]
. (2.13)
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3 Dipole Sum Rules

In the present and subsequent sections, we treat the symmetrized charge-charge density cor-
relation function 〈ρ(t, r)ρ(0, r′)〉s , where we set t ′ = 0 for simplicity. This function fulfills
the obvious neutrality condition

∫
dr〈ρ(t, r)ρ(0, r′)〉s =

∫
dr′〈ρ(t, r)ρ(0, r′)〉s = 0. (3.1)

Let us consider a (partial) dipole moment carried by the charge-charge density correlation
function 〈ρ(t, r)ρ(0, r′)〉s , with the point r being constrained to the region �1:

D(1)(t) =
∫ ∞

−∞
dx ′

∫ ∞

0
dx

∫
dRx〈ρ(t, r)ρ(0, r′)〉s . (3.2)

Note that, due to the translational invariance of the correlation function in the space per-
pendicular to the x axis, the integration

∫
dR can be equivalently rewritten as

∫
dR′ or∫

d(R − R′). Interchanging naively the order of integrations over x ′ and x in (3.2), rewriting∫
dR as

∫
dR′ and then applying the neutrality condition (3.1), the quantity D(1)(t) seems

to vanish. This is not true. As positive x and x ′ become large, 〈ρ(t, r)ρ(0, r′)〉s tends to the
bulk function S

(1)
b (t, r − r′) corresponding to the medium 1. This correlation function is not

small when the points r and r′ are close to one another. Consequently, the function in (3.2)
is not absolutely integrable which prevents from permuting the integrations over x ′ and x.
Subtracting and adding the bulk correlation function in (3.2) leads to

D(1)(t) =
∫ ∞

−∞
dx ′

∫ ∞

0
dx

∫
dRx

[
〈ρ(t, r)ρ(0, r′)〉s − S

(1)
b (t, r − r′)

]

+
∫ ∞

−∞
dx ′

∫ ∞

0
dx

∫
dRxS

(1)
b (t, r − r′). (3.3)

We assume that the convergence of the charge-charge density correlation function to the
bulk function occurs on a microscopic scale (the thickness of the boundary layer is of the
order of the bulk charge correlation function), so that

∫ ∞

−∞
dx ′

∫ ∞

0
dx

∫
dRx|〈ρ(t, r)ρ(0, r′)〉s − S

(1)
b (t, r − r′)| < ∞; (3.4)

negative values of x ′ do not represent any complication for x > 0 since the charge-charge
density correlation function is expected to be short ranged along the normal to the inter-
face. Under condition (3.4), we can permute the x ′ and x integrals in the first term on the
r.h.s. of (3.3); regarding the neutrality sum rule (3.1), this term becomes equal to 0. The sec-
ond term on the r.h.s. of (3.3) can be rewritten by using the translation and rotation invari-
ance of the bulk correlation function S

(1)
b (t, r − r′). Let us introduce an auxiliary quantity

s(x − x ′) = ∫
dRS

(1)
b (t, r − r′) which possesses the symmetry s(x) = s(−x). The elec-

troneutrality condition and the symmetry imply

∫ ∞

−∞
dx s(x) =

∫ ∞

−∞
dx xs(x) = 0.
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We perform a sequence of obvious operations

∫ ∞

−∞
dx ′

∫ ∞

0
dx xs(x − x ′) =

∫ ∞

−∞
dx ′

[∫ ∞

−x′
dx xs(x) + x ′

∫ ∞

−x′
dx s(x)

]

=
∫ ∞

−∞
dx ′

[
−

∫ x′

−∞
dx xs(x) + x ′

∫ x′

−∞
dx s(x)

]

= 1

2

∫ ∞

−∞
dx ′ x ′2s(x ′).

Passing to the last line, we used the integration by parts in x ′, taking into account that the
integrals

∫ x′

−∞
dx s(x) and

∫ x′

−∞
dx xs(x)

go to 0 as x ′ → ∞ more rapidly than any inverse power (because the bulk charge correlations
have good screening properties). The second term on the r.h.s. of (3.3) thus reads

∫ ∞

−∞
dx ′

∫ ∞

0
dx

∫
dRxS

(1)
b (t, r − r′) = 1

2

∫ ∞

−∞
dx

∫
dRx2S

(1)
b (t, r)

= 1

6

∫
dr r2S

(1)
b (t, r). (3.5)

The calculations of this paragraph can be summarized by the equality

∫ ∞

−∞
dx ′

∫ ∞

0
dx

∫
dRx〈ρ(t, r)ρ(0, r′)〉s = 1

6

∫
dr r2S

(1)
b (t, r). (3.6)

Note that this dipole sum rule depends on the bulk characteristics of the only one from the
two media.

We can treat similarly the (partial) dipole moment carried by the charge-charge density
correlation function 〈ρ(t, r)ρ(0, r′)〉s , when the point r is constrained to the region �2:

D(2)(t) =
∫ ∞

−∞
dx ′

∫ 0

−∞
dx

∫
dRx〈ρ(t, r)ρ(0, r′)〉s . (3.7)

The procedure analogous to the one outlined in the previous paragraph results in

∫ ∞

−∞
dx ′

∫ 0

−∞
dx

∫
dRx〈ρ(t, r)ρ(0, r′)〉s = −1

6

∫
dr r2S

(2)
b (t, r), (3.8)

where S
(2)
b (t, r) is the bulk charge-charge density correlation function corresponding to the

medium 2. Combining relations (3.6) and (3.8), the total dipole moment reads

∫ ∞

−∞
dx ′

∫
drx〈ρ(t, r)ρ(0, r′)〉s =

∫ ∞

−∞
dx ′

∫
dr (x − x ′)〈ρ(t, r)ρ(0, r′)〉s

= 1

6

∫
dr r2

[
S

(1)
b (t, r) − S

(2)
b (t, r)

]
. (3.9)
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We see that the dipole sum rules for an inhomogeneous configuration of two semi-infinite
media are expressible in terms of the second moments of the symmetrized charge-charge
density correlation function in an infinite medium with the frequency-dependent dielectric
function ε1(ω) or ε2(ω). This subject was studied in Sect. 3 of the previous paper [5]. The fi-
nal result for the second-moment condition, derived by using the Rytov fluctuational theory,
reads

β

3

∫
dr r2S

(α)
b (t, r) =

∫ ∞

−∞

dω

2π
exp(−iωt)

g(ω)

πω
Im

1

εα(ω)
, (3.10)

where the index α = 1,2 denotes the medium. The introduced function

g(ω) ≡ β�ω

2
coth

(
β�ω

2

)
(3.11)

fulfills g(ω) ≥ 1, the equality g(ω) = 1 takes place in the classical limit β�ω → 0. The
integral over ω on the r.h.s. of (3.10) is expressible in terms of elementary functions per-
haps only for the (one-component) jellium model of conductors, i.e. the system of identical
particles with the number density n, charge e and mass m, immersed in a neutralizing ho-
mogeneous background. The dielectric function of the jellium is adequately described, in
the long-wavelength limit q → 0, by the Drude formula with the dissipation constant taken
as positive infinitesimal [27],

ε(ω) = 1 − ω2
p

ω(ω + iη)
, η → 0+, (3.12)

where the plasma frequency ωp is defined by ω2
p = 4πne2/m. Inserting the representation

(3.12) into (3.10) and using the Weierstrass theorem

lim
η→0+

1

x ± iη
= P

(
1

x

)
∓ iπδ(x) (3.13)

(P denotes the Cauchy principal value), we arrive at

β

3

∫
dr r2Sb(t, r) = − 1

2π
g(ωp) cos(ωpt). (3.14)

In the static t = 0 case, for all media, using complex contour integration techniques and
the general properties of dielectric functions in the complex frequency upper half-plane, the
integral over ω on the r.h.s. of (3.10) can be formally expressed as [5]

β

3

∫
dr r2Sb(0, r) = 1

2π

[
1

ε(0)
− 1

]
+ 1

π

∞∑
j=1

[
1

ε(iξj )
− 1

]
. (3.15)

Here,

ξj = 2πj

β�
(j = 1,2, . . .) (3.16)

are the (real) Matsubara frequencies. For the general medium composed of species (electrons
and ions) σ with the number density nσ , charge eσ and mass mσ , the dielectric function
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fulfills the asymptotic relation [27, 28]

ε(ω) ∼|ω|→∞ = 1 − ω2
p

ω2
, ω2

p =
∑

σ

4πnσ e2
σ

mσ

. (3.17)

In the high-temperature (classical) limit β�ωp → 0, each of the Matsubara frequencies
{ξj }∞

j=1 is much larger than ωp , the corresponding terms in the sum on the r.h.s. of (3.15)
vanish and so the formula (3.15) represents the split of the bulk second-moment condition
onto its classical and purely quantum-mechanical parts. We conclude that the dipole sum
rules (3.6) and (3.8) take in the classical limit the following forms

β

∫ ∞

−∞
dx ′

∫ ∞

0
dx

∫
dRx〈ρ(r)ρ(r′)〉T

cl = 1

4π

(
1

ε1(0)
− 1

)
, (3.18)

β

∫ ∞

−∞
dx ′

∫ 0

−∞
dx

∫
dRx〈ρ(r)ρ(r′)〉T

cl = − 1

4π

(
1

ε2(0)
− 1

)
. (3.19)

These classical limits can also be obtained from the classical limits of (3.5) and (3.8), by
using the classical forms of the second moments of S

(α)
b (t, r) (which are easily obtained by

classical linear response theory), without using Rytov theory; this is here a check of Rytov
theory.

In the above derivation of dipole sum rules, only the results of the bulk version of the
Rytov fluctuational theory were needed at the final stage of the analysis. In what follows
we shall show how Rytov’s theory can be adopted from the beginning in its inhomogeneous
version; the true value of this approach will be justified later. Let the point r be in the region
�1, i.e. x > 0, the position of the point r′ is arbitrary. Using the formalism of Sect. 2 and the
explicit results for the retarded Green function tensor in the Appendix, the Fourier transform
of the charge-charge density correlation function is found to be

β〈ρ(x)ρ(x ′)〉sω,q = −1

2

g(ω)

πω
Im

[
1

ε1(ω)

](
q2 + ∂2

∂x∂x ′

)
δ(x − x ′). (3.20)

Here, the delta function has to be understood in a macroscopic sense (disregarding mi-
croscopic structure at small distances). Taking in (3.20) q = 0 and performing the inverse
Fourier transform in time, we obtain

β

∫
dR〈ρ(t, r)ρ(0, r′)〉s = 1

2

∫ ∞

−∞

dω

2π
exp(−iωt)

g(ω)

πω
Im

[
1

ε1(ω)

]

×
[
− ∂2

∂x∂x ′ δ(x − x ′)
]

. (3.21)

Since the integration by parts implies

∫ ∞

−∞
dx ′

∫ ∞

0
dx x

[
− ∂2

∂x∂x ′ δ(x − x ′)
]

= 1, (3.22)

we recover the dipole sum rule (3.6) with the inserted bulk second-moment condition (3.10).
The dipole sum rule (3.8) can be verified analogously.
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4 Surface Charge Density Correlations

4.1 Classical Limit

We extend the classical result of [23], Sect. II, to the configuration in Fig. 1, i.e., the two
half-spaces �1 (x > 0) and �2 (x < 0) filled with media characterized by static dielectric
constants ε1 ≡ ε1(0) and ε2 ≡ ε2(0), respectively. We recall that ε(0) → i∞ for conductors,
ε(0) = 1 for vacuum and ε(0) > 1 (finite) for dielectrics. We shall consider the static two-
point correlation functions with zero time difference t = t ′, so the time variables will be
omitted in the notation.

For an arbitrary configuration of two points r and r′ in the media, we shall compute the
correlation function 〈φ(r)φ(r′)〉T, where φ(r) is the microscopic electric potential created
by the media at point r. It is related to the microscopic charge density ρ(r′′) by

φ(r) =
∫

dr′′ ρ(r′′)
|r − r′′| , (4.1)

where the integral is over the whole space. In particular, we shall first calculate microscop-
ically the electric potential due to an infinitesimal charge Q placed in one of the two me-
dia and then complete this calculation with the phenomenological electrostatics result (the
method of images) for that potential.

Let us introduce a test infinitesimal pointlike charge Q at point r. The microscopic for-
mula for the total potential φtot induced at point r′ is

〈φtot(r′)〉Q = Q

|r′ − r| + 〈φ(r′)〉Q, (4.2)

where 〈· · · 〉Q means an equilibrium average in the presence of charge Q. The additional
Hamiltonian is H = Qφ(r). We now use the classical linear response theory for 〈φ(r′)〉Q
which says that

〈φ(r′)〉Q = 〈φ(r′)〉 − β〈φ(r′)H 〉T

= 〈φ(r′)〉 − βQ〈φ(r′)φ(r)〉T, (4.3)

where 〈· · · 〉 = 〈· · · 〉Q=0 means the standard equilibrium average (i.e., in the absence of the
test charge Q). Combining (4.2) and (4.3) we arrive at

βQ〈φ(r′)φ(r)〉T = Q

|r′ − r| − [〈φtot(r′)〉Q − 〈φ(r′)〉] . (4.4)

Now, let the point r be in region �1. According to phenomenological classical electro-
statics [27], the shift of the potential average due to Q is in �1

〈φtot(r′)〉Q − 〈φ(r′)〉 = Q

ε1|r′ − r| + Q′

ε1|r′ − r∗| , Q′ = ε1 − ε2

ε1 + ε2
Q, (4.5)

where r∗ = (−x,R) is the position of the image charge Q′. We would like to emphasize that
the relation (4.5) is valid for macroscopic distances |r′ − r| which are much larger than the
microscopic scale defined by the particle correlation length. If the test charge is in region �2
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at r, the average potential 〈φ(r′)〉Q in �2 is given by (4.5) with indices 1 and 2 interchanged.
Finally, if the test charge is in region �1 at r, the average potential in region �2 is given by

〈φtot(r′)〉Q − 〈φ(r′)〉 = Q′′

ε2|r′ − r| , Q′′ = 2ε2

ε1 + ε2
Q. (4.6)

A similar relation is also valid if the test charge is in �2 for the average potential in re-
gion �1.

Using (4.4) and (4.5), we obtain

β〈φ(r)φ(r′)〉T =
(

1 − 1

ε1

)
1

|r′ − r| + ε2 − ε1

ε2 + ε1

1

ε1|r′ − r∗| if x, x ′ > 0. (4.7)

If x, x ′ < 0, 1 and 2 should be interchanged. Similarly, (4.4) and (4.6) imply

β〈φ(r)φ(r′)〉T =
(

1 − 2

ε1 + ε2

)
1

|r′ − r| if x > 0, x ′ < 0 or x < 0, x ′ > 0. (4.8)

The surface charge σ(R) on the plane x = 0 at the point (0,R) is related to the disconti-
nuity of the normal x-component of the microscopic electric field E on the interface:

4πσ(R) = E+
x (R) − E−

x (R), (4.9)

where the superscript + (−) means approaching the surface through the limit x → 0+
(x → 0−). The surface charge correlation thus is

〈σ(R)σ (R′)〉T = 1

(4π)2
〈E+

x (R)E+
x (R′) + E−

x (R)E−
x (R′)

− 2E+
x (R)E−

x (R′)〉T. (4.10)

The electric field is related to the potential by E(r) = −∇φ(r), so that

〈Ex(r)Ex(r′)〉T = ∂2

∂x∂x ′ 〈φ(r)φ(r′)〉T. (4.11)

Using (4.7), we obtain

β〈E+
x (R)E+

x (R′)〉T
cl = ∂2

∂x∂x ′

[(
1 − 1

ε1

)
1

|r′ − r|

+ ε2 − ε1

ε2 + ε1

1

ε1|r′ − r∗|
] ∣∣∣∣∣

x=x′=0

. (4.12)

Since

∂2

∂x∂x ′
1

|r′ − r|
∣∣∣
x=x′=0

= 1

|R − R′|3 ,
∂2

∂x∂x ′
1

|r′ − r∗|
∣∣∣
x=x′=0

= −1

|R − R′|3 ,

we find

β〈E+
x (R)E+

x (R′)〉T
cl =

(
1 − 2

ε1
+ 2

ε1 + ε2

)
1

|R − R′|3 . (4.13)
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β〈E−
x (R)E−

x (R′)〉T is obtained from (4.13) by interchanging 1 and 2. Finally,

β〈E+
x (R)E−

x (R′)〉T
cl =

(
1 − 2

ε1 + ε2

)
1

|R − R′|3 . (4.14)

Using these relations in (4.10) gives the classical result

β〈σ(R)σ (R′)〉T
cl =

hcl(0)

|R − R′|3 , hcl(0) = − 1

8π2

(
1

ε1
+ 1

ε2
− 4

ε1 + ε2

)
, (4.15)

where the argument of the prefactor hcl(t − t ′) equals to 0 for the considered static case t =
t ′. We recall that this classical static result is valid for asymptotic distances |R − R′| much
larger than any microscopic length scale. If in �2 there is vacuum (ε2 = 1), one retrieves (20)
in [23]. If furthermore in �1 there is a conductor (ε1 = ∞), one retrieves the old result
of [18].

The surface charge density σ has to be understood as being the volume charge density ρ

integrated along the x axis on some microscopic distance within the interface region. From
this point of view, the formula (4.15) implies a sum rule for the volume charge-charge den-
sity correlation function. In particular, if one assumes an asymptotic behavior of the form

β〈ρ(r)ρ(r′)〉T
cl =

h(x, x ′)
|R − R′|3 , |R − R′| → ∞, (4.16)

h(x, x ′) obeys, in the classical limit, the sum rule
∫ ∞

−∞
dx ′

∫ ∞

−∞
dx h(x, x ′) = hcl(0). (4.17)

The above formalism can be extended straightforwardly to other geometries of the in-
terface between media, e.g. cylindrically or spherically layered media, or to planarly multi-
layered media. The only modification consists in the application of the corresponding variant
of the method of images.

It is instructive to compare the present classical result (4.15), valid for two fluctuating
media, with the previous result [18] valid for a fluctuating medium in contact with the inert
wall which “produces” the images, but does not fluctuate. For the special case of a Coulomb
conductor (ε1 → ∞) in contact with the fluctuating wall of the static dielectric constant
ε2 ≡ εW , the prefactor hcl(0) in the formula (4.15) takes the form

fluctuating wall: hcl(0) = − 1

8π2

1

εW

. (4.18)

On the other hand, for a Coulomb conductor in contact with the inert wall of the static
dielectric constant εW , the prefactor hcl(0) was found to be [18]

inert wall: hcl(0) = − 1

8π2
εW . (4.19)

We see that the two results (4.18) and (4.19) coincide with one another only for the vacuum
(plain hard) wall; in vacuum, there are no charges, so that the description by fluctuating
and inert walls should lead to the same result. Increasing εW beyond 1, our formula (4.18)
predicts the suppression of the surface charge fluctuations while (4.19) predicts their en-
hancement. Of course (4.18) is more appropriate since it takes into account the fluctuations
in the dielectric wall. Furthermore, in the limit εW → ∞, (4.18) correctly predicts that, in
the case of a conducting wall, the algebraic tail 1/|R − R′|3 is suppressed.
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4.2 Classical Surface Charge Correlations and Dipole Moment

In the classical limit, there exists a direct relation between the dipole moments (3.18), (3.19)
and the asymptotic behavior of the surface charge density correlations (4.15). The aim of
the present part is to derive this relation.

Let us consider the potential-potential correlation function, given by (4.7) or (4.8), when
the point r is localized at the interface, say r = 0, the position of the point r′ is arbitrary:

β〈φ(0)φ(r′)〉T =
(

1 − 2

ε1 + ε2

)
1

|r′| . (4.20)

Applying the Laplacian to both sides of this equation and using the Poisson equation

r′φ(r′) = −4πρ(r′), we get

β〈φ(0)ρ(r′)〉T =
(

1 − 2

ε1 + ε2

)
δ(r′). (4.21)

With regard to the definition of the microscopic potential (4.1), using in (4.21) the (partial,
two-dimensional) Fourier transform of the Coulomb potential

1

|r| =
∫

d2q

(2π)2
eiq·R 2π

q
e−q|x|, q = |q|, (4.22)

and the convolution theorem, we get

β

∫ ∞

−∞
dx〈ρ(x)ρ(x ′)〉T

qe−q|x| = q

2π

(
1 − 2

ε1 + ε2

)
δ(x ′). (4.23)

This equation is valid for large distances |R − R′| or, equivalently, small q . Performing the
small-q expansion in (4.23) and then integrating over all x ′ ∈ (−∞,∞), we arrive at

β

∫ ∞

−∞
dx ′

∫ ∞

−∞
dx〈ρ(x)ρ(x ′)〉T

q = q

2π

(
1 − 2

ε1 + ε2

)

+ qβ

∫ ∞

−∞
dx ′

∫ ∞

−∞
dx|x|〈ρ(x)ρ(x ′)〉T

q=0. (4.24)

This is the wanted relation. Inserting here the relations for the dipole moments (3.18) and
(3.19), we end up with

β

∫ ∞

−∞
dx ′

∫ ∞

−∞
dx〈ρ(x)ρ(x ′)〉T

q = q

4π

(
1

ε1
+ 1

ε2
− 4

ε1 + ε2

)
. (4.25)

Since, in the sense of distributions, the two-dimensional Fourier transform of 1/R3 is −2πq ,
the result (4.25) is equivalent to the previous one described by (4.15)–(4.17).

4.3 A Short Recapitulation of the Quantum Case

The long-range decay of the quantum surface charge density correlation functions, in both
retarded and nonretarded regimes, was the subject of Refs. [21–23]. By using the Rytov
formalism for a plane between two media, the two-point electric field correlations were
derived for any point positions in medium 1 and 2 and the discontinuity of the electric field
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across the interface was related to the surface charge density. The consequent integrals over
the frequency were treated using complex contour integration techniques and the general
properties of dielectric functions in the complex frequency upper half-plane.

In the static t = t ′ case, the final result for the Fourier transform of the quantum surface
charge density correlation function reads

β〈σσ 〉q = q

4π

(
1

ε1
+ 1

ε2
− 4

ε1 + ε2

)
+ Fqu(0, q), (4.26)

where the explicit form of the (static) function Fqu(0, q) depends on the considered, retarded
or nonretarded, regime. In the retarded regime, we have

F (r)
qu (0, q) = q2

2π

∞∑
j=1

1

κ1(iξj )ε2(iξj ) + κ2(iξj )ε1(iξj )

[ε1(iξj ) − ε2(iξj )]2

ε1(iξj )ε2(iξj )
, (4.27)

where the Matsubara frequencies ξj (j = 1,2, . . .) are defined in (3.16) and the inverse
lengths κα(ω,q) for the regions α = 1,2 in (A.1). For the purely imaginary values of the
frequencies ω = iξj , the values of the dielectric functions ε1,2(iξj ), and consequently of
the inverse lengths κ1,2(iξj ), are real positive. In the considered limit q → 0, κ1,2(iξj ) =
ξj ε1,2(iξj ). Since ξj ∝ j and, according to (3.17), ε1,2(iξj )−1 = O(1/j 2), the sum in (4.27)
converges. This means that the function F (r)

qu (0, q), being of the order O(q2), becomes negli-
gible in comparison with the first term in (4.26) in the limit q → 0. The prefactor associated
with the asymptotic decay (4.15) thus reads

h(r)
qu(0) = − 1

8π2

(
1

ε1
+ 1

ε2
− 4

ε1 + ε2

)
. (4.28)

This expression, which does not depend on the temperature and the Planck constant, coin-
cides with the classical result (4.15). In other words, the consideration of retardation effects
makes the quantum mechanics equivalent to its classical limit. Note that h(r)

qu (0) vanishes in
the case of two conductors (ε1 = ε2 = ∞), in agreement with an expected faster decay of
surface charge correlations.

The situation is fundamentally different in the nonretarded regime. In the limit c → ∞,
it holds κα = q . We thus get from the retarded representation (4.27) that

F (nr)
qu (0, q) = q

2π

∞∑
j=1

[
1

ε1(iξj )
+ 1

ε2(iξj )
− 4

ε1(iξj ) + ε1(iξj )

]
. (4.29)

With regard to the asymptotic behavior ε1,2(iξj )−1 = O(1/j 2), the sum in (4.29) converges,
the nonretarded function F (nr)

qu (0, q) is of the order O(q) and therefore contributes to the
surface charge density correlation (4.26). The prefactor h(nr)

qu (0) is a complicated function of
temperature. It was shown in [21] that for distances λ ∼ 1/q much smaller than c/ωp the
retardation effects are negligible and so the nonretarded result (4.29) takes place, while for
λ � c/ωp the retardation results describe adequately the decay of the surface charge density
correlations.

In the retarded regime, the time difference between points has no effect on the form of
the asymptotic behavior (4.15), i.e.

h(r)
qu(t) = − 1

8π2

(
1

ε1
+ 1

ε2
− 4

ε1 + ε2

)
. (4.30)
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5 Charge-Current Density Correlations

In this section, we shall deal with the charge-current density correlation functions
〈ρ(t, r)jk(0, r′)〉s , where the component index k equals x ≡ x1, y ≡ x2 or z ≡ x3. We recall
that for the bulk medium with the dielectric function ε(ω), these correlations were shown to
satisfy the following sum rules [5]

β

∫
dr〈ρ(t, r)jk(0, r′)〉sb = 0, (5.1)

β

∫
drxl〈ρ(t, r)jk(0, r′)〉sb = δkl

∫ ∞

−∞

dω

2π
exp(−iωt)

g(ω)

2π i
Im

1

ε(ω)
. (5.2)

The static t = 0 version of the sum rule (5.2) is trivial for any medium: Since g(ω) Im ε−1(ω)

is an odd function of ω, the r.h.s. of (5.2) vanishes. In the special case of the jellium model
with the dielectric function (3.12), the Weierstrass theorem (3.13) permits us to express
explicitly the time-dependent sum rule (5.2) as follows

β

∫
drxl〈ρ(t, r)jk(0, r′)〉sb = δkl

g(ωp)ωp

4π
sin(ωpt). (5.3)

We now consider the inhomogeneous situation pictured in Fig. 1. Let the point r′ be in the
region �1 (x ′ > 0), the position of the point r is arbitrary. We start with the inhomogeneous
Rytov theory (see Sect. 2 and the Appendix), whose results for the charge-current density
correlation function in the Fourier space, up to terms linear in qy and qz, can be summarized
as follows

β〈ρ(x)jx(x
′)〉sω,q = −g(ω)

2π i
Im

[
1

ε1(ω)

]
∂

∂x
δ(x − x ′) + O(q2

y , q
2
z , qyqz), (5.4)

β〈ρ(x)jy(x
′)〉sω,q = −g(ω)

2π
Im

[
1

ε1(ω)

]
qyδ(x − x ′) + O(q2

y , q
2
z , qyqz), (5.5)

β〈ρ(x)jz(x
′)〉sω,q = −g(ω)

2π
Im

[
1

ε1(ω)

]
qzδ(x − x ′) + O(q2

y , q
2
z , qyqz). (5.6)

Taking q = 0 in (5.4)–(5.6) and regarding that

∫ ∞

−∞
dx

∂

∂x
δ(x − x ′) = −

∫ ∞

−∞
dx

∂

∂x ′ δ(x − x ′) = 0, (5.7)

we obtain in the leading order

β

∫
dr〈ρ(t, r)jk(0, r′)〉s = 0 for all k = x, y, z. (5.8)

This is the analog of the bulk sum rule (5.1) which holds also for the point r′ being situated
inside the region �2.

With respect to the equality (obtained with the aid of the integration by parts)

∫ ∞

−∞
dx x

∂

∂x
δ(x − x ′) = −1 (5.9)



448 L. Šamaj, B. Jancovici

for (5.4) and in the next order in q of e−iq·(R−R′) for the relations (5.5), (5.6), we find

β

∫
drxl〈ρ(t, r)jk(0, r′)〉s = δkl

∫ ∞

−∞

dω

2π
exp(−iωt)

g(ω)

2π i
Im

1

ε1(ω)
. (5.10)

This is the analog of the bulk sum rule (5.2) for the point r′ ∈ �1. When r′ ∈ �2, an analo-
gous sum rule is obtained by substituting in (5.10) ε1(ω) by ε2(ω).

There exist another sum rules for the inhomogeneous situation which have no obvious
counterpart in the bulk case. These sum rules follow from the application of the equalities

∫ ∞

−∞
dx

∫ ∞

0
dx ′ ∂

∂x
δ(x − x ′) = −

∫ ∞

−∞
dx

∫ ∞

0
dx ′ ∂

∂x ′ δ(x − x ′) = 1, (5.11)

∫ ∞

−∞
dx

∫ 0

−∞
dx ′ ∂

∂x
δ(x − x ′) = −

∫ ∞

−∞
dx

∫ 0

−∞
dx ′ ∂

∂x ′ δ(x − x ′) = −1, (5.12)

to the formula (5.4) with q = 0. Namely, we have

β

∫
dR

∫ ∞

−∞
dx

∫ ∞

0
dx ′〈ρ(t, r)jx(0, r′)〉s = −

∫ ∞

−∞

dω

2π
e−iωt g(ω)

2π i
Im

1

ε1(ω)
(5.13)

and, similarly,

β

∫
dR

∫ ∞

−∞
dx

∫ 0

−∞
dx ′〈ρ(t, r)jx(0, r′)〉s =

∫ ∞

−∞

dω

2π
e−iωt g(ω)

2π i
Im

1

ε2(ω)
. (5.14)

These relations can be verified independently by using the method for the dipole sum
rules developed in Sect. 3. We first subtract from and add to the correlation function
〈ρ(t, r)jk(0, r′)〉s on the l.h.s. of (5.13) and (5.14) its bulk counterparts, corresponding to
medium 1 if x ′ > 0 and to medium 2 if x ′ < 0. As before, assuming that

∫
dR

∫ ∞

−∞
dx

∫ ∞

0
dx ′|〈ρ(t, r)jx(0, r′)〉s − 〈ρ(t, r)jx(0, r′)〉s(1)

b | < ∞ (5.15)

and, similarly,

∫
dR

∫ ∞

−∞
dx

∫ 0

−∞
dx ′|〈ρ(t, r)jx(0, r′)〉s − 〈ρ(t, r)jx(0, r′)〉s(2)

b | < ∞, (5.16)

the permutation of the x and x ′ integrations nullifies the contribution of the correlation
function minus its bulk counterpart due to the sum rule (5.8). Using the translational plus
rotational invariance of the bulk correlation function in the nonzero term, we obtain

∫
dR

∫ ∞

−∞
dx

∫ ∞

0
dx ′〈ρ(t, r)jx(0, r′)〉s(1)

b = −
∫

drx〈ρ(t, r)jx(0, r′)〉s(1)

b (5.17)

and, similarly,

∫
dR

∫ ∞

−∞
dx

∫ 0

−∞
dx ′〈ρ(t, r)jx(0, r′)〉s(2)

b =
∫

drx〈ρ(t, r)jx(0, r′)〉s(2)

b . (5.18)

In view of these relations, the inhomogeneous sum rules (5.13) and (5.14) are in fact the
consequences of the bulk sum rule (5.2) for media 1 and 2, respectively.
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6 Current-Current Density Correlations

As concerns the current-current density correlations 〈jk(t, r)jl(0, r′)〉s (k, l = x, y, z), for
the bulk medium with the dielectric function ε(ω), they satisfy the sum rule [5]

β

∫
dr〈jk(t, r)jl(0, r′)〉sb = −δkl

∫ ∞

−∞

dω

2π
exp(−iωt)

g(ω)ω

2π
Im

1

ε(ω)
. (6.1)

In the case of the jellium model with the dielectric function (3.12), the Weierstrass theorem
(3.13) implies

β

∫
dr〈jk(t, r)jl(0, r′)〉sb = δkl

g(ωp)ω2
p

4π
cos(ωpt). (6.2)

In the static t = 0 case, the formula (6.1) can be formally expressed as [5]

β

∫
dr〈jk(r)jl(r′)〉sb = δkl

⎧⎨
⎩

ω2
p

4π
+ 1

2π

∞∑
j=1

[
ξ 2
j

ε(iξj )
− ξ 2

j + ω2
p

]⎫⎬
⎭ , (6.3)

where ξj are the Matsubara frequencies defined by (3.16). The first term on the r.h.s. of (6.3)
represents the classical β�ωp → 0 limit, the second term is the purely quantum-mechanical
contribution to the sum rule.

For the studied configuration in Fig. 1, the inhomogeneous version of the Rytov method
gives in the limit q → 0, for distinct current indices,

β〈jk(x)jl(x
′)〉sω,q=0 = 0 for k �= l, (6.4)

for any positions of points r and r′ in media 1 and 2. The relation (6.4) is equivalent to

β

∫
dr〈jk(t, r)jl(0, r′)〉s = 0 for k �= l, (6.5)

where the position of the point r′ in media 1 or 2 is irrelevant. This is the generalization of
the bulk sum rule (6.1) for k �= l.

Let the point r′ be localized in the region �1, i.e. x ′ > 0, the position of point r is arbi-
trary. For the q → 0 limit of the diagonal correlation function of the xx current components,
the Rytov theory implies

β〈jx(x)jx(x
′)〉sω,q=0 = −g(ω)ω

2π
Im

[
1

ε1(ω)

]
δ(x − x ′). (6.6)

Integrating over x, this equation gives

β

∫
dr〈jx(t, r)jx(0, r′)〉s = −

∫ ∞

−∞

dω

2π
exp(−iωt)

g(ω)ω

2π
Im

1

ε1(ω)
, r′ ∈ �1. (6.7)

A similar expression can be derived when r′ ∈ �2.
The inhomogeneous sum rules obtained up to now are quite trivial generalizations of

the corresponding bulk sum rule (6.1). This is no longer true for the diagonal correlation
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functions of the yy and zz current components. For r′ ∈ �1, the inhomogeneous Rytov
method implies

β

∫
dr〈jy(r)jy(r′)〉sω = β

∫
dr〈jz(r)jz(r′)〉sω

= −g(ω)ω

2π
Im

[
1

ε1(ω)
+ f (ω,x ′)

]
, (6.8)

where the additional position-dependent function f (ω,x ′), which does not exist in the bulk
case, reads

f (ω,x ′) = [1 − ε1(ω)] k1(ω)

k1(ω)ε2(ω) + k2(ω)ε1(ω)

ε1(ω) − ε2(ω)

ε1(ω)

× exp

(
−|ω|

c
k1(ω)x ′

)
(6.9)

with kα(ω) (α = 1,2) defined by

k2
α(ω) = −εα(ω), Rekα(ω) > 0. (6.10)

In the derivation of the above result, the second derivative of the delta function δ(x − x ′)
appears, but its contribution vanishes after the integration over x. The function f (ω,x ′) is
equal to zero in three cases: the homogeneous case ε1(ω) = ε2(ω), the medium 1 is the trivial
vacuum ε1(ω) = 1 and far away from the boundary x ′ → ∞. Since limω→∞ f (ω,x ′) = 0,
the function f (ω,x ′) does not contribute to the classical limit of (6.8), but it does contribute
to quantum-mechanical corrections. A similar expression can be derived when r′ ∈ �2.

We conclude this section by noting that, according to the inhomogeneous Rytov theory,
the interface between two media breaks up the directional invariance of the diagonal current-
current correlations in the bulk. While the sum rule for the normal xx correlations (6.7) has
the form of the bulk one (6.1), the parallel yy and zz correlations (6.8) exhibit an addi-
tional dependence on the distance from the interface. We believe that this is not an artificial
anomaly of the applied method, but the true phenomenon occurring in the current-current
correlations functions. It is not clear to us whether there exists a simple relation between
the parallel current-current correlations, integrated over the transverse x-direction, and the
surface charge correlations. The continuity (conservation) equation is not a good candidate:
It relates the time derivative of the surface charge and the current component normal to the
interface, i.e. jx .

7 Conclusion

In this paper, we applied the Rytov fluctuational electrodynamics to the inhomogeneous
geometry in Fig. 1 to derive a sequence of sum rules for the charge-charge, charge-current
and current-current density correlation functions. The validity of some of these sum rules
was controlled independently by using methods developed previously in the context of the
model of a fluctuating semi-infinite conductor in contact with an inert wall.

In the realistic model considered here, both semi-infinite media in contact fluctuate. Com-
paring the classical static results (4.18) and (4.19) for the fluctuating and inert walls, respec-
tively, we see that they coincide, as it should be, in the vacuum case εW = 1, but for εW > 1
these results are fundamentally different.
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Some of the inhomogeneous sum rules represent a straightforward generalization of their
bulk counterparts. This is not the case of the current-current density correlation functions;
the sum rules (6.7) and (6.8) indicate a breaking of the directional invariance of the diagonal
current-current density correlations by the interface.
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Appendix

In this Appendix, we present explicit forms of the retarded Green function tensor elements
Djk(ω,q;x, x ′) for the two semi-infinite media geometry pictured in Fig. 1. The half spaces
�1 (x > 0) and �2 (x < 0) are characterized, besides the dielectric functions εα(ω) (α =
1,2), by the inverse lengths κα(ω,q) (α = 1,2) defined as follows

κ2
α(ω, q) = q2 − ω2

c2
εα(ω), Reκα(ω,q) > 0. (A.1)

Here, from the two possible solutions for each κα we choose the one with the positive real
part in order to ensure the regularity of tensor elements Djk(ω,q;x, x ′) at asymptotically
large distances from the interface x → ±∞. For simplification reasons, we shall omit in the
notation the dependence of functions on the frequency ω and the wave number q .

(i) If the two points r, r′ are localized in the same half-space, say r′, r ∈ �1 (i.e.
x, x ′ > 0), we introduce a pair of functions

u(x, x ′) = 2π�c2

ω2ε1κ1

[
e−κ1|x−x′| + ε1κ2 − ε2κ1

ε1κ2 + ε2κ1
e−κ1(x+x′)

]
. (A.2)

v(x, x ′) = 2π�c2

ω2ε1κ1

[
e−κ1|x−x′| − ε1κ2 − ε2κ1

ε1κ2 + ε2κ1
e−κ1(x+x′)

]
. (A.3)

These functions satisfy the same type of the differential equation

(
∂2

∂x2
− κ2

1

)
f = −4π�c2

ω2ε1
δ(x − x ′); f = u(x, x ′) or v(x, x ′), (A.4)

and are related by

∂u(x, x ′)
∂x

= −∂v(x, x ′)
∂x ′ ,

∂u(x, x ′)
∂x ′ = −∂v(x, x ′)

∂x
. (A.5)

The third function we shall need is defined by

w(x,x ′) = 4π�c2

ω2

κ2 − κ1

κ1

1

ε1κ2 + ε2κ1
e−κ1(x+x′). (A.6)

In terms of the introduced functions, the elements of the retarded Green function tensor are
given by

Dxx(x, x ′) = ∂2

∂x∂x ′ u(x, x ′) − ω2

c2
ε1v(x, x ′), (A.7)
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Dxy(x, x ′) = −iqy

∂

∂x
u(x, x ′), Dyx(x, x ′) = iqy

∂

∂x ′ u(x, x ′), (A.8)

the remaining xz and zx components are given by the replacement rule Dxz(x, x ′) =
Dxy(x, x ′){qy ↔ qz},Dzx(x, x ′) = Dyx(x, x ′){qy ↔ qz},

Dyy(x, x ′) =
[
q2

y − ω2

c2
ε1

]
u(x, x ′) + q2

z w(x, x ′), (A.9)

Dzz(x, x ′) = Dyy(x, x ′){qy ↔ qz} and

Dyz(x, x ′) ≡ Dzy(x, x ′) = qyqz[u(x, x ′) − w(x,x ′)]. (A.10)

(ii) If the two points r, r′ are localized in the different half-spaces, say r′ ∈ �1 and r ∈ �2

(i.e. x ′ > 0 and x < 0), we introduce the function

s(x, x ′) = 4π�c2

ω2(ε1κ2 + ε2κ1)
eκ2x−κ1x′

. (A.11)

In terms of this function, the elements of the retarded Green function tensor are given by

Dxx(x, x ′) = −q2s(x, x ′), (A.12)

Dxy(x, x ′) = −iqyκ1s(x, x ′), Dyx(x, x ′) = −iqyκ2s(x, x ′), (A.13)

Dxz(x, x ′) = Dxy(x, x ′){qy ↔ qz},Dzx(x, x ′) = Dyx(x, x ′){qy ↔ qz},
Dyy(x, x ′) = [−q2

z + κ1κ2]s(x, x ′), (A.14)

Dzz(x, x ′) = Dyy(x, x ′){qy ↔ qz} and

Dyz(x, x ′) = Dzy(x, x ′) = qyqzs(x, x ′). (A.15)
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